RIEMANN-LIOUVILLE OPERATORI QATNASHGAN KASR TARTIBLI ISSIQLIK TARQALISH TENGLAMASIGA QO‘YILGAN KOSHI MASALASI

Authors

  • Temirova Shaxlo Mirzoxidovna1 Bukhara State University, st. M.Ikbola, 11, Bukhara 200114, Uzbekistan.1,2 Institute of Mathematics named after V.I. Romanovsky Academy of Sciences of Uzbekistan, st. Universitetskaya, 4b, Tashkent 100174, Uzbekistan

Abstract

The field of mathematical analysis, called fractional calculus and devoted to the study and application of derivatives and integrals of arbitrary order, has a long history and rich content, due to penetration into it and relationships with a wide variety of issues in the theory of functions, integral and differential equations, etc. It is located in constant development, which feeds on the ideas and results of various directions in mathematical analysis. The fractional calculus of functions of one and many variables continues to develop intensively at the present time, as evidenced by both a large stream of publications and international conferences specially devoted to questions of fractional calculus. It is possible that it is precisely the constant development of the theory of fractional integro-differentiation, and in recent decades its great branching, especially in the case of functions of many variables, that is the reason for the lack of monographs on this theory. Meanwhile, this circumstance could not but serve as a brake on the development of fractional calculus. A number of very significant and fundamental results have been published in original papers, many of which are difficult to access and little known.

This article is devoted to the solution of the  Koshi problem for a differential equation with fractional Riemann-Liouville derivatives. The work uses the spectral method and the integral Laplace transform to find the solution of the direct problem in explicit form through an infinite series with a three-parameter Mittag-Leffler function. Further, when sufficient conditions are met with respect to the given functions, it is proved that the constructed solution is regular.

 

References

1. Учайкин В.В. Метод дробных производных. – Ульяновск: Артишок, 2008. – 512 с.

2. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, (2006) 523 p.

3. А.В. Псху. Уравнение дробной диффузии с оператором дискретно распредленного дифференцирования. Сиб. электрон. матем. изв. Том 13, стр. 1078–1098 (2016).

4. Р. И. Паровик. Задача Коши для нелокального уравнения диффузии-адвекции радона во фрактальной среде. Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 1 (20), (2010), с. 127–132.

5. Schumer, R.; Benson, D.A.; Meerschaert, M.M.; Baeumer, B. Fractal mobile/immobile solute transport. Water Resour. Res. 2003, 39, 1–12.

6. И.И. Хасанов, Д.И. Акрамова, А.А. Рахмонов. Исследование задачи Коши для одного уравнения дробного порядка с оператором Римана-Лиувилля. Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. 2023. Т. 27, № 1. https://doi.org/10.14498/vsgtu1952.

7. У.Д. Дурдиев. Задача об определении коэффициента реакции с дробном уравнении диффузии. Диф. Урав., 2021, том 57, № 9, с. 1220-1229.

8. D.K. Durdiev, J.J. Jumaev. Inverse Coefficient Problem for a Time-Fractional Diffusion Equation in the Bounded Domain. Lobachevskii Journal of Mathematics vol. 44, pp. 548-557, (2023).

9. Д.К. Дурдиев. Об определении коэффициента уравнения смешанного параболо-гиперболического типа с нехарактеристической линией изменения. Диф. Урав., 2022, том 58, № 12, с. 1633-1644.

10. Mathai, A.M., Saxena, R.K., Haubold, H.J.: The H-function. Theory and applications. Springer, Dordrecht (2010) 269 p.

11. Z. Tomovski, R. Hilfer, and H. M. Srivastava, ˘ “Fractional and operational calculus with generalized fractional derivatives operators and Mittag-Leffler type functions,” Integral Transform. Spec. Funct. 21, 797–814 (2010).

12. Durdiev Durdimurod K., Shishkina Elina L., Sitnik Sergei M. The explicit formula for solution of anomalous diffusion equation in the multi-dimensional space. Lobachevskii Journal of Mathematics 42(6), 2021, pp. 1264–1273.

13. Durdiev D. K., Shishkina E. L., Rahmonov A. A. The explicit formula for a solution of wave differential equation with fractional derivatives in the multi-dimensional space. Bull. Inst. Math., 2022, Vol.5, №2, pp. 1-12

14. M.A. Sultanov, D.K. Durdiev, A.A. Rahmonov. Construction of an Explicit Solution of a Time-Fractional Multidimensional Differential Equation. Mathematics 2021, 9(17), 2052;

15. ABRAMOWITZ, M. and STEGUN, I. A., Handbook of Mathematical Functions with Formulas, Graphics and Mathematical Tables, Dover, New York, 1972.

Downloads

Published

2024-12-02